Nonexpansive retractions in Hilbert spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Variational Inequalities and Nonexpansive Mappings in Hilbert Spaces

In this paper, we suggest and analyze a three-step iterative scheme for finding the common element of the set of the solutions of the general variational inequalities involving two nonlinear operators and the set of the common fixed point of nonexpansive mappings. We also consider the convergence analysis of the suggested iterative schemes under some mild conditions. Our results improve and ext...

متن کامل

Viscosity Approximation Methods for Nonexpansive Nonself-Mappings in Hilbert Spaces

Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let C be a nonempty closed convex subset of Hilbert space H , P a metric projection of H onto C and let T be a nonexpansive nonself-mapping from C into H . For a contraction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction x → tn f (x) + (1− tn)(1/n) ∑n j=1(PT) x. Consider also the iterati...

متن کامل

Research Article An Iteration Method for Nonexpansive Mappingsin Hilbert Spaces

In real Hilbert spaceH , from an arbitrary initial point x0 ∈H , an explicit iteration scheme is defined as follows: xn+1 = αnxn + (1 − αn)Tn+1xn,n ≥ 0, where Tn+1xn = Txn − λn+1μF(Txn), T :H →H is a nonexpansive mapping such that F(T) = {x ∈ K : Tx = x} is nonempty, F :H →H is a η-strongly monotone and k-Lipschitzian mapping, {αn} ⊂ (0,1), and {λn} ⊂ [0,1). Under some suitable conditions, the ...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales UMCS, Mathematica

سال: 2009

ISSN: 0365-1029

DOI: 10.2478/v10062-009-0008-8